Multi-Agent based Dynamic Stability Control for Low-Frequency Global Mode of Oscillations

نویسندگان

  • Takashi Hiyama
  • Wei Zhang
چکیده

This paper presents a multi-agent based dynamic stability control of electric power systems especially for low-frequency global mode of oscillations. Different types of intelligent agents are also proposed to realize the proposed wide area stability control system: monitoring agents for gathering required information to evaluate the dynamic stability of the study system, control agents which perform the actual control action, and a supervisor agent for the real time monitoring of eigenvalue based dynamic stability and the decision of the required dynamic stability control action to keep the pre-specified dynamic stability margin. The supervisor agent sends commands to a selected unit to keep the stability margin within the pre-specified range, whenever the stability margin is violated in the study system. To demonstrate the efficiency of the proposed multi-agent based dynamic stability control system, real time non-linear simulations have been performed on the Analog Power System Simulator at the Research Laboratory of Kyushu Electric Power Co.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Multi-Objective HBMO-Based New FC-MCR Compensator for Damping of Power System Oscillations

In this paper, a novel compensator based on Magnetically Controlled Reactor with Fixed Capacitor banks (FC-MCR) is introduced and then power system stability in presence of this compensator is studied using an intelligent control method. The problem of robust FC-MCR-based damping controller design is formulated as a multi-objective optimization problem. The multi-objective problem is concocted ...

متن کامل

A new control strategy for SSSC to improve low-frequency oscillations damping

When power systems are expanded and connected together with weak tie lines, the low-frequency oscillations are increased and the stability margin of the power system decreases. Therefore, when designing the transmission system to be used, it is necessary to maintain the dynamic stability of the power system, and to make sure to have the most possible stability margin. SSSC is a FACTS device con...

متن کامل

A new control strategy for SSSC to improve low-frequency oscillations damping

When power systems are expanded and connected together with weak tie lines, the low-frequency oscillations are increased and the stability margin of the power system decreases. Therefore, when designing the transmission system to be used, it is necessary to maintain the dynamic stability of the power system, and to make sure to have the most possible stability margin. SSSC is a FACTS device con...

متن کامل

FACTS Control Parameters Identification for Enhancement of Power System Stability

The aim of this paper is to investigate a novel approach for output feedback damping controller design ofSTATCOM in order to enhance the damping of power system low frequency oscillations (LFO). The design ofoutput feedback controller is considered as an optimization problem according with the time domain-basedobjective function which is solved by a honey bee mating optimization algorithm (HBMO...

متن کامل

A New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations

A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008